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About Me

SeyedAlireza Vaziri

* Network/System Engineer since 2007
* Security Administrator since 2016
* Machine Learning newbie
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 Botnet detection and countermeasure
 Netflow based detection

* Machine learning classification

* Questions
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Bot

Vulnerable and unattended Devices:

* Computers

* Smartphones

* |oT (e.g. CCTV, xDSL Modem)
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Botnet Usage

Network of bots is named Botnet and being used

for:
* Spams
* DDoS

e Malware Distribution
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Botnet History

e Marina
e /eus
e Cutwail

e Miral
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Botnet Dictionary

* Bot
* Botnet
e CnC (Command and Control)

e Botmaster

SEYEDALIREZA VAZIRI - RIPE 75 7



Botnhet Diagram

BOTMASTER




Modern Botnhet Diagram

BOTMASTER




Modern Botnet

e P2P Communication

* No SPOF (Single Point of Failure)
* Encryption
e Randomness

e (Obfuscation
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Bot lifecycle
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Botnet Detection

Current methods:
e |DPS
e DPI

e Signature Based, Anomaly Based
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Dealing with Botnets

Internal External

We are attacking others Others attacking us
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NetFlow/S-Flow/IPFIX

"netflow": {

* src/dst IP/Port
"in_pkts": 7,
"first_switched": "2017-10-22T719:59:15.931z2",
"ipv4_next_hop": "172.27.254.254",
"14_src_port": 53723,
"sampling_algorithm": @,
o P k t "in_bytes": 704,
Ea (: (E} "protocol": 6,
"tcp_flags": 16,
"14_dst_port": 443,
"src_as": 0,

[ ) B t "output_snmp": 16,
y eS "dst_mask": 0,
"ipv4_dst_addr": "91.108.4.139",

"src_tos": 0,
"src_mask": 0,

® AS N "version": 5,
"flow_seqg_num": 58951530,

"flow_records": 30,
"ipv4_src_addr": "172.27.100.83",
"engine_type": 0,
. "engine_id": 0,
¢ D u rat I O n "input_snmp": 5,

"last_switched": "2017-10-22T719:59:44.931Z",
"sampling_interval": @

3

"@timestamp": "2017-10-22T19:59:59.931Z2",

"geoip": {
"as_org": "Telegram Messenger LLP",
"asn": 62041,

ip": "91.108.4.139"
1
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Blacklist

Lists of CnC IP addresses:

e |SC
e CYMRU
e Spamhaus

* Many more
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ELK Stack

Powerfull Search Engine:

Elasticsearch, Logstash, Kibana

Open Source

Handle millions of records with ease

Scalable

q :
%* elastic
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Netflow to ELK

NetFlow ’ Logstash » Elasticsearch » Kibana
- . . -




Logstash Filtering

Blacklist IP Dictionaries

 Marking malicious traffic

GeolP translation
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Logstash Diagram
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Corporate Malicious Traffic
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Machine Learning

Finding Similar Flows
 Supervised Learning
* |nfected Flows as Train/Test data

* C(lassity flows based on learned data
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Features for ML

 Malicious marked traffic
e SRCIP
e DST port
e SRC port
* Byte
* Packets
* Duration

* ASN
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Targets for ML

e Malicious Flows
e /eus
e Miral

e any other malicious flow
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Reduce False Positives

* Trusted Flows
* DNS
e HTTP
* HTTPS




Scikit Learn

 Python based ML library

* Easyto use
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/eus (UDP) Case Study

Train/Test

KNN —K=7 60000 50/50 82.9%
KNN — K=7 30000 50/50 86.8%
KNN —K=7 100000 50/50 89.3%

More data beats better algorithm!

SEYEDALIREZA VAZIRI - RIPE 75



Why not 100%

* Flows are unidirectional

* Flows are not classified into lifecycle steps
* Timeouts and retry

 Speed and Bandwidth

e Different versions of Zeus

SEYEDALIREZA VAZIRI - RIPE 75



Final Diagram
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ASN whitelist

35,000

* Google

* Facebook e
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ToDo

* Bidirectional and related Flows
* ASN/Prefix reputation/anomaly

e Actions for detected botnets
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Final words

 Netflow is cheap and handy
* Machine learning is amazing
* ML is the tool that will rescue us from internet

threats
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aliereza/flyzer

README.md

Flyzer

NetFlow/S-Flow/IPFIX Based Botnet Analyzer

Flyzer is a set of custom configuration tweaks to ELK stack, that will help you find botnet activities in your network
with netflow output.

elasticsearch [v5.:5.2" logstash [v5.5.2 | kibana [v5.5:2 § NetFlow 5,9

Introduction
There have been lots of botnet detection method in computer networks, some of them work perfectly, some of them

has some false positives and false negatives. As botnet evolve, detection methods have to revolve to catch botnets.
This method detects botnet based on similiar flows and has nothing to do with packet payload and DPI.

Prerequisite

This method is maily developed over ELK stack and has been tested on multiple elasticsearch instances. Make sure
you are using the latest stable realease of ELK stack.
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Questions
Comments




