Trusted Routing in IoT

Dr Ivana Tomić
Research Associate
Imperial College London
Email: i.tomic@imperial.ac.uk

In collaboration with:
Prof. Julie A. McCann and
AESE group
Outline

- Sensors and Sensor Networks – Are these the most Critical Components in IoT?
- What is the Security & Cyber Risk in IoT?
- How big is the Loss of Data due to the Break in Routing Paths?
- How to establish a Trusted Routing in IoT?
Sensors and networks: A value-creation framework

- A heavy reliance on **wireless communications** (typically a best-effort network).
- A range of **communication protocols** to satisfy the communication needs of diverse applications.

Wireless Sensor Network
many low-cost, low-power devices communicating wirelessly with BS
IoT systems differ from traditional IT systems?

- **Environment**: physical exposure of IoT devices
- **Resources**: sensors are low-cost, low-power, resource constrained devices
- **Variety**: more types of devices and different types of networks in IoT
- **Volume**: billions of IoT devices compared to millions of IT devices
- **Consequences**: disruption of IoT systems could lead to large economic losses and have a significant impact on the welfare of people

BUT it also creates new opportunities for all that information to be compromised!
The communication protocols have not been designed with a security goal in mind.

I. Tomić, J. A. McCann. “Trusted Routing In IoT”
The network level attacks can cause data loss and increase the data collection latency.

Network communication can be attacked, causing the **loss of data** which can compromise system functionality and cause failure.

- **Blackhole attack**
- **Sinkhole attack**
- **Replay attack**
Understanding the impact and consequences of an attack helps to prevent possible DoS

Implementation: Contiki OS & Cooja (Contiki simulator), 100 nodes random topology

Observations:
- Each attack has its own signature wrt to the network performance.
- Two groups: 1. attacks that introduce additional data → reduced PDR and increased E2E delay 2. attacks that reduce no. of packets → reduced PDR and reduced E2E delay.
A novel self-healing scheme that detects and recovers from common attack scenarios

Node

- **Trust Scheme**
 - Time = t
 - Parent Observation Set
 - Compute Similarity
 - If non-trusted parent
 - Update Trust
 - Time = t+1
 - Parent Observation Set

- **Notification Scheme**
 - Notify nodes on the route
 - Create mobile agent
 - Change Parent

Notify

Base Station

I. Tomić, J. A. McCann. “Trusted Routing In IoT”
Each sensor builds a trust model of its neighbourhood to adapt routing decisions

- Pairwise trust between a node and its neighbours.
- Choose your routing paths accordingly.
- This allows data to **flow around** regions of the network affected by an attack.

I. Tomić, J. A. McCann. “Trusted Routing In IoT”
A simple notification scheme propagates routing decisions from the affected areas to the sink

- Change due to a potentially malicious activity in the neighbourhood triggers the creation of mobile agents.
- They spread the information in network so that the damage of an attack is bounded.

I. Tomić, J. A. McCann. “Trusted Routing In IoT”
Our solution reduces data loss due to the varied attack scenarios down to 1% (5% on average)

Sinkhole attacks:
- a) 50 nodes, multiple attackers
- b) 25, 50 and 100 nodes, single attacker

Blackhole attacks:
- a) 50 nodes, multiple attackers
- b) 25, 50 and 100 nodes, single attacker

Replay attacks:
- a) 50 nodes, multiple attackers
- b) 25, 50 and 100 nodes, single attacker
It achieves low overheads of 1% and a detection reliability of 99.3% tested across scenarios.

The **sensitivity** of our solution can be adjusted per user requirements by setting a sensitivity parameter α. While $\alpha = 0.9$ gives the lowest number of false positives, we opted for a more conservative approach and $\alpha = 0.7$ which ensures a good sensitivity to all attacks with 99.3% detection reliability.
To conclude...

Our experimental results showed **high effectiveness** in terms of data loss rate requiring **low operational overheads** for varied attack scenarios.

- CISCO/Silicon Valley Community Foundation “Fog to FIELD”
- S4 (EPSRC Programme Grant): Science for Sensor Systems Software

[3] https://labs.ripe.net/Members/ivana_tomic/iot-turning-evil
Thank you for your attention!