
RIPE75 - Network monitoring at scale
Louis Poinsignon

Why monitoring and what to monitor?

Why do we monitor?

This is the new style.

● Billing
○ Reducing costs

● Traffic engineering
○ Where should we peer?
○ Where should we set-up a new PoP?
○ Optimizing our network

● Anomaly detection
○ Troubleshooting
○ Proactive monitoring and predictions

Sources of information

This is the new style.

● SNMP

● Flow data

● BGP/routing table

Sources of information

This is the new style.

● SNMP

● Flow data

● BGP/routing table

Flow sampling protocols

This is the new style.

NetFlow: protocol from Cisco. IPFIX: the open standard.

Template based.
Takes 11 minutes to gather all the templates.

Between sampling and collection:
delay of 23 seconds for NetFlow v9 (Cisco)
and 65 seconds for IPFIX (Juniper).

Flow sampling protocols

This is the new style.

sFlow:

Each structure is specified (HTTP, network, Wi-Fi…)
Counters and packet sampling (headers)
Instantaneous

What we want

Sampling information:
● Rate
● Source router
● Timestamp

Network information
● AS number / next-hop
● Mac-addresses
● Interfaces
● Source/destination

○ IP
○ Ports
○ Protocol
○ TCP flags

NetFlow sFlow

BGP information
Timestamp

MAC addresses
Interfaces

Source
Destination

Cloudflare today

This is the new style.

100+ edge routers
● various vendors
● all around the globe

Different environments
Terabits of traffic

It’s already too late if a user notifies us about an issue.

What we used before

This is the new style.

nfdump : collection / local storage
nfacctd : aggregation

Two separates path.
nfacctd was able to correct BGP information.
No sFlow.

Routers

Collector with
BGP

Database

Aggregation

Collector

Database

Why we stopped using them

This is the new style.

They are great tools but they became unfit to our situation.
Limitations:

● Vendor bug: corrupting ASN information
● Too many packets a single collector could not process them

Adding sFlow visualization:
● Limited ASN information
● Two aggregations in parallel

Need to monitor the collection
Anybody should be able to build tools from this data
Create aggregations for Cloudflare (type of plan, region, etc.)

Vendor bug

This is the new style.

Losing a major ISP in Europe. Replaced by a small ISP from Brazil.
Memory corruption
Alerts going off

What we built

What we built

DecodersRouters Processing

Aggregation

Data warehouse

sFlow
IPFIX

NetFlow v9

↓
protobuf

Add Cloudflare fields
Add/fix BGP info

Add geo information

Raw data

For single queries
and computing totals

Eg: top networks in
country

For quick visualization
of data over time

Eg: current traffic in
country

What we built

DecodersRouters Processors

Clickhouse
(data warehouse)

Flink OpenTSDB
(timeseries)

Kafka

What we built

Own NetFlow+IPFIX+sFlow collector GoFlow:

● In Go
● Easily extensible for new protocols
● Outputs to protobuf format
● Can be parallelized
● Benchmarked to 30 000 messages a second
● Running in production at Cloudflare
● Living in containers

Parallel processing units using BGP data, geolocation
databases, Cloudflare APIs to:

● Correct/add fields
● Add Cloudflare specific information

Inserters to populate databases.

Message broker to connect the pieces: Kafka.

Aggregation done by Flink.

Stored in OpenTSDB and Clickhouse.

Aggregations

Flink is a Java framework for building
stream-processing apps (jobs).

Jobs are split into tasks and sent to a cluster.

Easy to scale, balance and reorder tasks.

Schematic view of the app.

Accurate time-aggregation.

Flink - MapReduce

AS65001
Bytes: 1
Packets: 1

Flow Flow Flow Flow

AS65001
Bytes: 1
Packets: 1

AS65002
Bytes: 1
Packets: 1

AS65001
Bytes: 1
Packets: 1

AS65001
Bytes: 2
Packets: 2

AS65002
Bytes: 1
Packets: 1

AS65001
Bytes: 1
Packets: 1

AS65001
Bytes: 3
Packets: 3

AS65002
Bytes: 1
Packets: 1

Step 1

Step 2

Step 3

Keying+rebalancingSumming

Summing

Flink - Sample program
DataStream<FlowMessage> inData =
new FlinkKafkaConsumer09<FlowMessage>(
 "netflows-processed",
 new FlowMessageDeserializer(),
 propertiesConsumer);

DataStream<FlowMessage> inDataEyeball =
inData.filter(new FlowFilter.EyeballFilter()).
setParallelism(1).broadcast();

DataStream<FlowAggMessage> inDataAgg =
inDataEyeball.map(new FlowUtils.Mapper("DstAS,colo"));

inDataAgg.reduce(new FlowTransformations.FlowAggReduceKey());

Source (Kafka)

Filter

Mapping

Reduce

Flink - Windowing

ASN-Colo
Timestamp: n

Flow B Flow EFlow C
Flow D

ASN-Colo
Timestamp: n + 2

Time

A

B
Kafka+

No data
for 2 mn

Flow A

MapReduceflushes

Session Windows

Flows for one ASN
and one colo

...

Business intelligence:
Simple as a SQL query
Or an API call

Results - Flows

Top networks per country, datacenters, plan,
transit providers...

IPv6 share for biggest networks

Traffic of every ASN. By data centers. By country. By interface. By type of traffic. By transit/peer...
Other teams started using the data to troubleshoot non networks problems.

Results - Aggregations

https://blog.cloudflare.com/the-story-of-two-outages/

Results - Example: maintenance

Automatically build a list of best hours for a maintenance.

Normalized traffic of our PoP over a day

Traffic variations are visible:
● Turkey rate-limiting (15/07/2016)
● Iraq shutting down Internet during exams
● Country wide power failure
● ...

Machine-learning to classify.

Automatic detection.

Mostly Python.

Anomaly detection

Time [s]

Example: Taiwan power cut

https://blog.cloudflare.com/power-outage-taiwan/

Derivation
Correlation

Pearson coefficient
How different is it from usual

Median
Remove small artifacts

Variance
Intensity of variation

Algorithms

Outliers

Local variance following median

Correlation coefficient

Pipeline integration (project)

Live aggregated data

Eg: X doing Y Gb/s at T
Historical data

Eg:
X did Y1 Gb/s at T-1day
X did Y2 Gb/s at T-2day

Coefficients and other
transformations

Machine learning to
determine if result of the

transformation is an
anomaly

Send an alert

User-assisted classification

Sources of information

This is the new style.

● SNMP

● Flow data

● BGP/routing table

BGP collection

This is the new style.

● 100’s of routers, 100’s of full tables, millions of routes
○ RIPE RIS has 15 peers (rrc00)
○ Route-views has 47 peers (route-views2.oregon-ix.net)

● View of route-leaks

● Similar pipeline and tools

What we built

CollectorsBGP information

Processing

Aggregation

Data warehouse

Full table and
forwarding updates

Add Cloudflare fields
Add/fix BGP info

Add geo information

Updates containing
routes

Updates history

Eg: route leak

Full table

Eg: routing intelligence

Full table?

This is the new style.

● Stream processing versus Batch processing

● Spark (or Flink)

● Examples of what we did:
○ Find out the longest AS-Path
○ Peered prefixes
○ Mapping IP → ASN

Open-source

Flow collector

Flow collector will be open-sourced soon.

What it does:

● Decode NetFlow/IPFIX/sFlow network fields
● Encode them into a generic “network sample” format (interface, ASN, src/dst IP...)
● Provide metrics
● Filters corrupted data (garbage value)
● Provides framework for parallel processing/decoding
● 23µS for NetFlow decoding / 80µS for sFlow decoding

What it does not do:

● Decode any field (eg: Wi-Fi, GSM specific fields, etc.)
○ But, you can extend it with a new protobuf format and decoder

● Aggregation

https://github.com/cloudflare/

Costs

This is the new style.

Do you want to run it on a Cloud?

Product Amazon Google Azure

Collection Compute/Docker Compute/Docker Compute/Docker

Stream processing Kinesis
(Firehose+Stream)

DataFlow/DataProc Stream Analytics

Storage Redshift BigQuery SQL Data Warehouse

Costs

This is the new style.

UDP: about 70 bytes per flow

Message: around 100 bytes

Aggregation:

based on cardinality and time-windows

Message aggregated: 100 bytes

Case 1 Case 2 Case 3

Traffic 10Gb/s | 1Mpps 100Gb/s | 20Mpps 1Tb/s | 100Mpps

Sampling 8192 16384 16384

Number of samples 120/sec 1200/sec 6100/sec

Aggregation window 120 s 300 s 120 s

Cardinality 120 12000 120000

Processor units 0.5 1 2

Throughput < 1 Mb/s 1 Mb/s 5 Mb/s

Aggregation
throughput

< 1 Mb/s < 1 Mb/s 1 Mb/s

Monthly data raw 32 GB 320 GB 1.6 TB

Monthly data agg 270 MB 100 GB 270 GB

Costs

This is the new style.

Case 1 Amazon Google

Compute units T2.micro $15 micro $10

Storage RDS
(db.T2.medium)
or Dynamo $50

BigQuery $10

Aggregation Firehose $2
Analytics $79

Dataflow $50

Total $200/month $100/month

Case 2 Amazon Google

Compute units T2.medium $80 standard $80

Storage RDS $300 BigQuery $100

Aggregation Firehose $20
Analytics $160

Dataflow $300

Total $500/month $500/month

Case 3 Amazon Google

Compute units T2.medium $100 standard $80

Storage (+Redshift) $650 BigQuery $200

Aggregation Analytics $200 Dataflow $300

Total $1000/month $800/month

BGP library

The BGP library will also be released

What it does:

● Decode BGP packets
● Can maintain session and a RIB with peers
● Encode/decode MRT
● Includes RFC and extensions

What you can do:

● Implement the behavior you want (route-reflector)
● Event-based API

https://github.com/cloudflare/

Thank you
louis@cloudflare.com

@lpoinsig

